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ABSTRACT

This paper aims to summarize several algorithmic tech-
niques taken from dynamical system modeling that can re-
purposed to produce ’constructive accumulation’, a paradigm
for describing the process by which concurrent, rhythmic
events or sound sources gradually converge over time. Us-
ing different behaviors of self-organization from dynam-
ical systems modeling, these strategies employ networks
of locally and globally coupled oscillators that can gener-
ate a range of swarm-like acoustic textures, each reflect-
ing a range of synchronous states along a rhythm-timbre
spectrum. More specifically, I review the behavioral dy-
namics and clustering kinetics of ‘scrambler’ oscillators,
pulse-coupled oscillators, and a group of Kuramoto os-
cillators with feedback. I also provide a basis for soni-
fying such models, briefly touching on concepts in psy-
choacoustics that are relevant to the design of such sonic
systems. Lastly, I demonstrate the way in which they’re
implemented, controlled, and composed for as generative
models in my recent artwork, ‘In Praise of Idleness’.

1. INTRODUCTION

Several active fields of research are focused on the form
and function of collective behavior as it pertains to the
acoustic environment which include biomusicology, music
perception, and sensorimotor synchronization. While syn-
chronization in music performance is evidence of our own
dynamic ability for complex forms of mutual-entrainment,
several groups of animal and insect populations have been
shown to resort to similar modes of synchronization in the
form of chorusing, coordinated signaling, and stridulation
often performed as a means for reproductive practices [1]
[2] [3]. While not an explicitly auditory phenomenon, the
prominent paradigm of firefly signaling is a classic exam-
ple that illustrates the extent to which locally interactive
behavior can result in emergent, global patterns [4]. In ur-
ban and metropolitan life, the sonic world is awash with
noisy, periodic sounds such as public transportation, the
harsh, repetitive sounds of a construction site, or the ner-
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vous energy of restless legs under a desk. Navigating,
interacting with, and understanding our physical environ-
ment oftentimes entails using auditory cues in order to guide
our behavior [5] [6]. As in music, we take note of the tem-
poral relationships between regularly occurring events in
order to infer information about its source and make pre-
dictions about the future [7] [8]. However what qualities
of the sounding environment allow us to infer that they are
indeed connected?

In general, when events occur with enough regularity and
are spaced close enough in time, we tend to attribute some
coupling mechanism or process that binds them together
[9] [10]. However, this becomes more complicated when
we are tasked with unpacking these dynamics in the con-
text of simultaneous sound sources that may not be cou-
pled in simple one-to-one relationships and through which
synchrony emerges over time. These systems are said to
undergo a (number of) phase transitions that form a con-
tinuum of synchronous states from asynchrony to complete
synchronization. Here I define a process called construc-
tive accumulation that aims to describe any time-based,
sonic environment or process that sees the gradual aggre-
gation, or accumulation, of seemingly disparate sound events
converging over time into a temporal order or pattern. This
broad description is applicable to stridulating cricket popu-
lation, groups of mechanically coupled metronomes, mem-
bers of an orchestra, and the applause that follows a per-
formance of the latter, all examples that have been mod-
elled using synchronization strategies discussed in this pa-
per [11] [12] [13]. It’s worthwhile to take a moment and
try to unpack what is meant by ’order’ or ’pattern’. Since
this type of behavior is prevalent in specific biological pop-
ulations, there is research attempting to delineate a taxon-
omy of signal complexity as they relate to different types
of rhythmic patterns [14]. In the present paper, ’order’ or
’pattern’ refers to the perception and outcome of obtain-
ing periodically, organized sounds. Here of course we are
dealing with human perception, the attribution of subjec-
tive criteria over phenomena that self-organizes in some
way over time. As such, I will examine three models of
collective behavior in order to further characterize such
constructively accumulated processes.
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2. MATHEMATICAL DESCRIPTION

2.1 Pulse-Coupled Oscillators

Pulse-coupled oscillators have been used to describe a num-
ber of mutually synchronous systems in the biological world
(pacemaker cells, cricket chirping, insulin secretion in pan-
creas, menstrual cycles) [15] [16] [17]. Pulse-coupling of-
ten relies on a coupling function that oversees how cou-
pling is applied when an oscillator ‘fires’ or ‘triggers’. Phase
response curves (PRC) govern this coupling relationship,
parameterized by a coupling coefficient, as different PRCs
shapes result in different dynamics. Here I define one of
the simplest types of pulse-coupling among ‘integrate-and-
fire’ oscillators that were initially inspired by the self align-
ing nature in pacemaker cells [18].

Using the model as defined Mirollo and Strogatz, a sys-
tem of N pulse-coupled, integrate-and-fire (IF) oscillators,
individual oscillators dynamics is defined in Equation (1),
(1.1), and (1.2) [19].

ẋi(t) = F (xi(t)) (1)

ẋi(t
+) = 0, if xi(t) = 1 (1.1)

xi(t) = min(1, xi(t
�) +m✏) (1.2)

The set of (xi)N are the state variables in a system of
N integrate-and-fire oscillators. Equation (1.1) shows how
the state variable is reset upon reaching the threshold of
1 and Equation (1.2) shows how coupling coefficient, ✏,
is distributed to other oscillators upon firing. Assuming
the ith oscillator has not yet crossed the threshold, m is
number of simultaneous pulses received and therefore the
strength of its advancement dependent on the number of
oscillators firing.

Equation (2) shows how the state variable, x, is related to
a phase variable, ✓, which simplifies the analysis such that
we can examine the system in terms of the phase variable
and a function that relates ✓ to x.

xi = f(✓i), f : [0, 1]� > [0, 1] (2)

Equation (3) and (4) illustrate the function, F (x) and
f(✓), in terms of the state variable, x, and the phase state
variable ✓.

F (x) =
eb � 1

b
e�bx, b > 0 (3)

F (✓) =
1

b
ln(1 + (eb � 1)✓) , b > 0 (4)

Now, we can a define a new function, f , that maps the
phase state variable, ✓, and following the convention of
Mirollo and Strogatz is defined to be monotonically in-
creasing and concave down. Equation (1.1) shows how the
oscillator is coupled to the others from the coefficient, ✏. b
is a parameter that defines the relative concavity (down) of
the function, f .

More simply, each oscillator rises toward a threshold value
of 1, upon which it ’fires’ and is reset to 0. Upon this fir-
ing, other oscillators’ phase states are either advanced by
an amount, depending on the strength of ✏, and/or pulled
into the threshold for firing, whichever is less since (1.2)
is an argmin function. The oscillators are globally coupled
(fully connected) and maintain identical dynamics insofar
as their phase state variable is governed by a function that
controls its time-course, increasing monotonically (con-
cave down) toward the threshold. The function constrains
the phase state: it increases the phase state to 1 whereby it
is then reset to 0.

2.1.1 Dynamics

IF pulse-coupled oscillators has been shown to eventually
lead to full synchrony regardless of N and for all initial
conditions and natural period if coupling is applied. Esti-
mates for the rate of synchrony was shown to be inversely
proportional to the product ✏b [19]. There is evidence to
suggest that they synchronize at times proportional to the
log of the number of oscillators in the network. These out-
comes were a result of global, all-to-all coupling; if we
allow for coupling to only occur ‘locally’, for example in a
chain, the time needed for synchronization decreases con-
siderably, becoming a nearly linear function of the natural
period and the coupling strength [20]. Despite the longer
time scale when the natural period is small and when N
is large, synchrony is still inevitable and the unusual syn-
chronizing dynamics during this build-up period are still a
subject of active research.

If we allow the natural frequencies of the oscillators to
take on different values, synchrony is still achievable if
they are kept within bounds . Most research in these sys-
tems have looked at the kinetics of two oscillator systems
and then tried to extrapolate to larger N systems, the lat-
ter often being carried out through numerical simulation: a
number of papers have demonstrated how frequency mis-
match and delays can lead to unusual dynamical regimes,
some of which contain resonances in polyrhythmic rela-
tionships to its intrinsic frequency distributions [21]. As
will be shown in a later section, these types of oscillators
settle into synchrony at a much more progressive, gradual
rate than the spontaneous synchronization associated with
continuously coupled systems. This has a number of desir-
able characteristics in terms of potential for sonic genera-
tion.

2.1.2 "Scrambler" Oscillators

Networks of scrambler oscillators probably are the most
basic form of a loosely coupled oscillator system from which
synchrony emerges through mean-field approximation [22].
A group of scrambler oscillators of size N are comprised
of pulse-coupled oscillators each containing a phasor state
variable, �, that increases linearly and identically from a
baseline of 0 to a threshold value of 1. Upon reaching the
threshold value, the oscillator fires and performs three ac-
tions: 1) "scrambles", all other oscillators (and other extant



for i in iterations do
for n in N do

osc[n].state = osc[n].state + T
if osc[n].state � 1 then

for j in N do
if osc[j].state �1–(osc[n].cluster.size/N) then

osc[j].cluster = osc[n].cluster
else

if osc[j].state � (1 � (1/N)) then
osc[j].cluster = increment cluster counter

osc[n].state = 0
else

osc[n].state = random(0,1)

Table 1. Pseudocode for scrambler oscillation. NB:
osc[n].cluster.size refers to the number of clusters that are
tagged with the same counter number, not the size of the
array itself.

‘clustered’ oscillators) to a new random state. Oscillators
already contained within a ‘cluster’ get reset to the same
state. 2) oscillators with states within the threshold and
1/N of the threshold are subsumed, or absorbed, into the
firing oscillators cluster. 3) the oscillator that fired (and
any oscillator that just clustered along with it) is reset to the
baseline state of 0. Lastly, if a cluster of oscillators reaches
the threshold, then the condition for absorbing other oscil-
lators becomes (threshold – j/N) where j is the number of
clusters in that group. This has the effect of allowing more
oscillators to become absorbed a single cluster grows in
size.

Using the description initially defined by O’Keefe et al.
(2015), I provide a brief pseudocode (see Table 1) rather
than a formal analytical description since this type of sys-
tem is better described as an iterative process. All of the
N oscillators are initialized with a different integer repre-
senting their cluster state (to group oscillators into cluster
groups once they’ve been absorbed into a cluster) and a dif-
ferent randomly initialized phase state. T is the increment
that sets the natural period of oscillation.

2.1.3 Dynamics

O’Keefe et al. define a natural disorder parameter that pro-
vides a measure of system’s ‘fragmentation’ based on how
many clusters are present at any given time [22]. The sys-
tem starts out maximally fragmented because each oscilla-
tor is only assigned to its own cluster group. The authors
derive an expression for the rate equation that illustrates
how the fragmentation decreases exponentially over time
(with the natural disorder parameter reaching 1/N) as more
oscillators are absorbed to synchrony. In general, scram-
bler oscillators achieve synchrony in a much less ’produc-
tive’ way as compared to simple IF coupled oscillators be-
cause oscillators outside of threshold are simply reset to
random values rather than being pulled up or down accord-
ing to a PRC. Oscillators are pulled into synchrony with-
out maintaining ordering since they are reset to a random
value, unlike in pulse-coupling.

2.2 Summary Statistics: Phase Coherence

For any collection of phase states, we can also look at other
summary statistics that provide a useful indication of the
group’s synchrony. These values are the phase coherence,
R, also known as a circular mean vector and the average
angle of the phase coherence,  . Mapping each phase state
(0-1) of the oscillators above onto a circle (0-2⇡), we can
derive an expression that relates the relative ‘spread’ or dis-
persion of the swarm of phases of each oscillator to a num-
ber between 0 and 1 with larger numbers associated with
more synchrony. We define the phase coherence in Equa-
tion (5) where j is a complex number.

Rej =
1

N

NX

i=1

ej�i (5)

Figure 1 shows plots from a numerical simulation of a
group of 100 scrambler oscillators over a duration of around
twelve seconds.

Figure 1. 100 Scrambler Oscillator Numerical Simulation.
(Top to bottom) Individual oscillator phasor trajectories,
Phase Coherence (R(t)), Average Angle ( (t)), Cluster
Groupings, and Number of oscillators firing per natural pe-
riod.

These plots illustrate the emergence of self-organization
as the oscillators phases begin to align over a period of
around six seconds. Plot a) shows the phasor trajectory of
each of oscillator, Plot b) the phase coherence, R(t), Plot
c) the average angle,  (t), and Plot d) the state variable
of cluster groups for each oscillator over time. As more
oscillators are recruited into synchrony, the number of dis-
tinct cluster groups decreases until every oscillators is in
the same cluster. Lastly, Plot e) shows the number oscilla-
tors firing plotted in multiples of the natural period of the
oscillators (as binned into one of ten temporal regions per
natural period). Since each oscillator is identical, contain-
ing the same natural frequency, the entraining tempo that
the oscillators will give rise to sync is predetermined by
this initialization. Each plot provides useful visual infor-
mation that allows us to gain insight into how the system



self-organizes over time.

2.3 Continuous Coupling: Kuramoto Oscillators

My previous work has looked at Kuramoto oscillators from
a number of different perspectives relevant for sound syn-
thesis and music generation (for more information, please
see [23] [24] [25]. Kuramoto oscillators are a type of limit-
cycle oscillators with natural frequencies, !i, and a cou-
pling term that continually adjusts their phases according
to a sinusoidal phase response curve [26]. The natural fre-
quencies are typically drawn from different statistical dis-
tributions and since coupling is applied at all times, syn-
chrony can result if coupling surpasses a critical coupling
value. The governing equation for a group of N Kuramoto
oscillators is shown in Equation (6).

�̇i = !i +
Ki

N

NX

j!=i

sin(�j � �i) (6)

Using the phase coherence from Equation (5), we can
rewrite Equation (6) in terms of the complex order param-
eters, R and psi as shown in Equation (7) where an ex-
tra component, ⇤e(�i), is also added to allow for external
forcing.

�̇i = !i + ⇤e(�i) +
Ki

N
R

NX

j=1

sin( � �i) (7)

2.3.1 Dynamics

While explicit coupling is a function of the phase coher-
ence, the external forcing function has been shown to mod-
ulate the time-varying mean field and thereby modulate the
phase coherence over time which allows us to effectively
’tune’ the synchrony of the system [27]. In this orienta-
tion, each oscillator interacts only with the mean-field ap-
proximated complex order parameter values, R and  . It’s
useful to imagine R and  in polar form where it’s vi-
sually represented as a time-varying phasor, R(t)  (t)�,
moving about a circle.  (t) traces out the center of mass
of the swarm of points, each point representing an oscil-
lator, and R(t) increases in length when the oscillators’
phases are more aligned. The external forcing function,
⇤e(�i) modifies the the natural frequency distribution and
allows for different modes of both forced and mutual en-
trainment [28].

If we let g(!) be a normal distribution from which the
oscillators’ natural frequencies are drawn and allow to N
go to 1, the critical coupling–the value, Kc, for which
the synchrony emerges–has been shown to be a function of
the mean natural frequency, !c, found in the distribution
(Kc = 2/(⇡g(!c)). At the critical coupling, synchrony
emerges very rapidly and spontaneously, often referred to
as a first-order phase transition which associated with an
abrupt jump from a low value or R to a large one.

Allowing the parameters, N , !i, Ki, and ⇤e(�i), to take
on time varying values allows for a range of unusual semi-

synchronous states to emerge including partial states of
synchronization, frequency locking, chimeric states, belle-
pherone states (multiple coherent clusters), and resonant
states [29] [30] [21].

3. RHYTHMIC GENERATION SCHEMES

3.1 Oscillator Phase Mapping to Control Signals

The collective, self-organizing behaviors exhibited by these
systems can be meaningfully applied to sound in a num-
ber of ways and similar topics have been explored in com-
puter music research [31] [32]. Through relatively simple
parameterization, we can exploit the system dynamics in
such a way to produce a range of sonic outcomes that char-
acterize constructive accumulation. This involves treating
the dynamical systems as generative models that map the
system output states to control signals that can be applied
to sound production.

Through numerical simulation, we can plan, control, and
compose for different outcomes depending on our musical
intentions. Constructive accumulation deals specifically
with the temporal organization of sound onsets; that is we
are concerned with the building up of sonic mass using
small, discrete sonic objects, a process that shares similar-
ities in many approaches to computer music such as con-
catenative and granular synthesis, microsound, and com-
positional techniques involved in micropolyphony [33], [34],
[35].

Circle maps are widely used in mathematics and physics
to depict iterative phase states and have been employed in
the service of sound synthesis in several ways [36] [37].
Figure 3 illustrates such a circle map with several oscil-
lators represented as black points, each moving about the
circle with a frequency, !i = �̇i. These control signals can
subsequently be mapped to any number of musical param-
eters. The most simple form of this is to apply thresholds
along the phase space and trigger a sound event once per
cycle, when �i = 0. However, extending this notion we
can trigger multiple sound onsets during the course of a
single limit-cycle to create a number of different rhythmic
patterns. More formally stated: if we let, ✓m, be M num-
ber of points along the unit circle, we create triggers using
pulses when �i == ✓m.

3.1.1 Using mean field parameters

Similarly, we can use the complex order parameters, the
phase coherence, R(t), and the average angle,  (t) as an-
other control signal from which to assign to other control
triggers. In this case, we can use the magnitude of the
phase coherence and the angle of  (t) trigger events based
on a similar collection of m thresholded values defined as
rtm and  tm. In this way, other control signals are only
generated during specific regions of the dynamic regime of
the system. The Figure shows two phase coherence magni-
tude trigger lengths (rt1,t2), and two phase coherence angle
trigger angles ( t1,t2). Similarly, we allow the set of trig-



ger points to take on different values over time in order to
introduce more rhythmic variation into the system.

Figure 2. Circle map illustration of oscillator phase and
complex order mapping to control signal triggers.

4. PSYCHOACOUSTIC CONSIDERATIONS:
TIMBRE VS. RHYTHM FORMATION

Our ability to discern, process, and entrain to multiple, si-
multaneous sounds has been looked at from a number of
perspectives in music cognition, psychoacoustics, and au-
ditory scene analysis. Research has shown that auditory
stream formation depends largely on the temporal coher-
ence inherent in a sound signal [38]. While much of this
line of research focuses on the separation and identification
of simultaneous sound sources (’the cocktail party’ prob-
lem’), the dynamical systems and generation scheme thus
described are concerned with concurrent, quasi-periodic
rhythmic sources, an auditory scene that has been less stud-
ied in sensorimotor synchronization studies [9]. More specif-
ically, how does the simultaneous presentation of multiple,
yet identical, periodic sound sources differ from attending
to a normal acoustic environment that contains an abun-
dance of non-coupled sounds?

Studies in sound texture perception provide one clue into
how the brain encodes such auditory scenes comprised of
similar acoustic events. McDermott and Simoncelli were
able to realistically approximate soundscapes of relative
temporal homogeneity (e.g. insect swarms, running water,
and applause) by recreating the time-averaged statistics of
an audio signal’s frequency decomposition [39]. Since at-
tending to every singular sources in such a texture would
be cognitively demanding, this study supports the idea that
when confronted with a large number of collective sound
sources, we adapt to a temporal averaging strategy whereby
timbre is identified through statistical inference. However,
applying coupling to these systems, the resultant signals
are no longer statistically ’stationary’ and the emergence
of cognitive processes implicated in beat extraction most
likely take precedence. For example, one study looked at
how ’embedded’, repeated temporal-spectral acoustic fea-
tures in mixtures have been shown to facilitate discernment

and source identification [40].
Similarly, research in auditory scene analysis provides

other clues. For instance, gestalt grouping and stream con-
vergence based on temporal proximity has been shown to
be a factor in how we perceptually merge different sounds
with differing rhythms [41] [42]. If enough onsets are tem-
porally proximate, a signal’s temporal envelope also pro-
vides auditory cues that allow for the emergent rhythm to
be detected if the constituent elements are of similar, ho-
mogenous textures [43]. In developing his ’sound mass’
pieces in the mid 20th century, the composer György Ligeti
remarked how sounds produced around 18 times/second
create the perception of a continuous texture, an observa-
tion also noted in Iannis Xenakis’ writings [35]. In his
music, global rhythms emerge from the local interactions
of independent instruments, a compositional technique de-
fined as a sort of micro-polyphony.

One unusual auditory environment that produces a simi-
lar spectrum of textures is the phenomena of synchronized
clapping that occurs during audience applause. Several
studies have examined the crowd dynamics using systems
of coupled oscillators where they proposed that an audi-
ence will instinctually adapt their natural clapping frequency
to a lower frequency which has the effect of reducing the
frequency dispersion of intrinsic frequencies within the group
[11] [44]. In this self-organizing behavior, audience mem-
bers are most likely making phase adjustments to synchro-
nize with other audience members in their spatial vicinity.

My previous experimental research has looked at how
we entrain to networks of coupled oscillators by exam-
ining how beat extraction is carried out when confronted
with sounds generated in a similar schema [45]. In one
study, participants were asked to tap to the ’beat’ to audi-
tory stimuli where coupling strengths were modified from
’weak’ to ’strong’. Participants displayed a wide range of
tap strategies that we classified as isochronous, patterned
(non-isochronous but rhythmic), or dense (rapid tapping)
with the latter two strategies associated more with weaker
coupled sounds. This supports the notion that such audi-
tory scenes encapsulate different understandings of sound
through listening and interaction, perhaps through a form
of active sensing. We are particularly interested in the
quasi-periodic states that arise just before synchronization
and at what point are we able to latch onto the emergent
pattern in the form of an entraining rhythm. This is il-
lustrated in Figure 1 during the first half of the sequence
where there begins a salient formation of ’lumps’ of oscil-
lator firings around an increasingly narrower and periodic
temporal centers.

These research questions motivate the need to carry out
alternative approaches for reproducing these dynamics in
artistic and aesthetically mediated environments. With this
in mind, I present one such instantiation of these ideas in
my installation, ’In Praise of Idleness’.



5. IN PRAISE OF IDLENESS

5.1 About the Piece

Figure 3. View of the Installation

In this site-specific installation 1 that premiered at Ga-
lerija Alkatraz in Ljubjlana, several large socket wrenches
(“ratchets”) are driven by an assembly of motors that ki-
netically rotate them in a number of coordinated ways.
Mechanically, ratchets have an internal clicking mecha-
nism that produces sound when it is rotated. As an audio-
visual symbol linking mechanical labour with the passage
of time, the socket wrenches evoke the ambient landscapes
of swarms of stridulating insects, metronomes, or ticking
clocks. In order to control their behavior, several different
algorithmic techniques are used to choreograph the socket
wrenches’ collective dynamics, the result being a cooper-
ative and sometimes crude synchronisation of movement
and sound that is realized through their kinetic design and
through the “sound(s) of their own making”, a reference to
Robert Morris’s piece of a similar title. Dialoguing with
Jacques Attali’s notion of noise as constituting “a political
economy of music”–one that is intimately tied up with so-
ciety’s modes of production–this piece points to the ways
in which simple repetition can be exploited to build up
complex auditory textures through the aforementioned pro-
cess of constructive accumulation [46]. The title, "In Praise
of Idleness", is taken from an essay by Bertrand Russel in
which he calls into question our cultural obsession with
work as inherently virtuous.

5.2 Technical Requirements

The installation uses the rotational motion of 19 socket
ratchets as a way to induce small mechanical clicks that
serve as sound events using the circle map scheme shown
in Figure 3. Each ratchet is housed in a wooden, c-shaped
form with is hung from the ceiling. A small lever arm,
attached to the shaft of a NEMA 17 stepper motor (0.59 N-
m, 1.7A, 1.8�), rotates the ratchet when a pulsed voltage

1 Please see: https://www.youtube.com/watch?v=
68sq2jm_WCw&t=0s

is applied to the stepper coils. Each stepper motor is con-
trolled with a dedicated stepper motor driver (TBB6600)
and powered with an individual power supply (12 V, 2 A).
The required torque to drive the ratchet lever was calcu-
lated to be around 0.24 N-m.

An Arduino mega was used to control the rotation of the
stepper motors using the Stepper Library and all the algo-
rithms were written using the Arduino language. Numeri-
cal integration for the IF pulse-coupled, and Kuramoto os-
cillators using a forward Euler integration scheme which
has been shown to be an adequate approximation when
the increment step size is small with respect to the in-
trinsic period [47] [48]. The motor drivers are provided
with a 5V PWM signal from the arduino outputs that rotate
the ratchets to produce a single click or a "stridulation" of
clicks which interestingly shares a similar kinetic mecha-
nism with the plectrum of a cricket body [2].

5.3 Composition

Since rich complexity exhibited by collective systems is
often a function of large-scale statistical processes, the in-
stallation was designed to bring out a dynamic range of
collective behaviors. Given their sensitive nature of the pa-
rameters spaces, these systems are not conducive for metic-
ulously planned approaches for deterministic outcomes. Rather,
using the knowledge imparted from their dynamics, they
encourage the careful design of constraints that will ulti-
mately yield approximate results. The different processes
associated with constructive accumulation were mainly used
to evoke the presence of a seemingly autonomous and aware
swarm of sound. Different outcomes are realized by mod-
ulating parameters associated with each of the collective
behaviors.

5.3.1 Composition of Time points

The installation features different behavioral modes that
are based on states associated with the coupled oscillator
regimes above. These modes are written as routines in the
code such that when they are triggered, the relevant pa-
rameters and time points are initialized and the generative
model is allowed to play out. The routines themselves are
randomly selected.

The parameters for each of the coupled oscillator algo-
rithms were made time-varying by setting target values at
discrete time points and then either stepping or linearly in-
terpolated between values. Numerical simulation were per-
formed in Python to approximate the output behavior of
the system. For demonstration purposes, an example of six
of the oscillators’ time points in graph form is illustrated
in Figure 4 which shows the time varying coupling co-
efficients (Ki) and the natural frequency dispersion, (�!)
overlayed with the center natural frequency, (!c). For this
scenario with continuous Kuramoto oscillators, there is no
coupling at the beginning with each oscillator simply mov-
ing at its natural frequency as dictated by natural frequen-
cies chosen by the distribution with !c with variance �! .

https://www.youtube.com/watch?v=68sq2jm_WCw&t=0s
https://www.youtube.com/watch?v=68sq2jm_WCw&t=0s


The bottom Figure shows 5 different numerical simula-
tions of the phase coherence magnitude, |R(t)|. In par-
ticular demonstrates how sensitive the system is to initial
conditions and changes in the frequency distribution. Time
points were also created that allow oscillators to be enabled
(turned on/off).

I provide a few descriptions of the ways in which each of
the coupling processes are used in the piece and provide a
timestamp in the documentation video (see footnote above)
where this behavior occurs.

• Pulse-Coupling: Simple synchronization over differ-
ent time periods as parameterized increasing cou-
pling strength, ✏, over time. Constructive accumu-
lation tends to happen more progressively as com-
pared to the other methods. (0:00 to 0:41).

• Scrambler oscillators: Synchronization with a rela-
tively slow natural period (2:10 - 2:30).

• Kuramoto Oscillation: Synchronization as applied
to rotational speed rather than pulses to produce a
noisy timbral texture (00:52 - 01:09). Partial desyn-
chronization after full synchrony (1:10 - 1:22). Par-
tial synchronization by applying feedback to Ki us-
ing phase coherence state, R (1:30 - 2:10).

Other coordinative behaviors were also implemented in
the code which are not discussed here. This includes rou-
tines for setting the speed and rotation duration for each
ratchet without coupling and a simple time based triggers
that pulses the ratchets at strict periods.

6. CONCLUSIONS

Ultimately, this artwork demonstrates one such artistic ap-
plication of the concept of constructive accumulation as a
way to explore different form of synchronization as a sen-
sory phenomena. Using outcomes of research looking into
these systems’ dynamics, this paper attempted to summa-
rize these processes from the perspective of such a process
where sound onsets coalesce in time from disorder to emer-
gent rhythm. By presenting relevant research in auditory
scene analysis and beat extraction/entrainment, I hoped to
suggest several approaches to characterizing the auditory
reception of such sensory phenomena and how they might
encourage different listening modes and strategies. With
an abundance of synchronization strategies being actively
examined in this domain, future work would do well to
look at more recent developments that may be particularly
suitable for sonic engagement. One such area concerns
Kuramoto models related to higher dimensional spaces that
have shown great promise for reproducing complex behav-
iors associated with swarms and flocking [29] [49].
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