
3/22/17 

A Generative Model of Pulse Percept: Analyzing Performances of Free Jazz Drumming using Dynamic Beat 
Tracking and Recurrent Neural Networks 

Nolan Lem 

 

Introduction 

The establishment of the pulse percept, the basic unit of perceived rhythm that constitutes a musical beat, is 
critical to the way in which we listen, engage, and perform with music. Fundamental to this notion of pulse is 
the way in which it orientates cognitive processes involved in anticipation, expectation, and arousal. Taking 
cues from connectionist theories related to musical structure, pulse can be construed to be an organizational unit 
from which we derive emergent orders of temporal structure (Jackendoff & Lerhdal 1983). Pulse extraction is 
the means through which we are able to manage time-dependent events, namely those that occur with some 
level of regularity.  
 
 

For most music that adheres to fixed tempo (e.g. dance 
music), pulse can be thought of as the beat that is most 
perceptually salient to the listener. For instance, several 
studies have used beat tapping data as criteria from which to 
understand the perception of pulse (Ellis 2007, Davis et al. 
2009, Holzapfel 2012) within a listener. One confounding 
principle in pulse perception is the notion of the missing 
‘fundamental’: some musical stimuli may induce a pulse 
percept that is not physically present in the acoustic signal 
itself (Large et al. 2015). Implicit in this formulation is the 
idea that we are not necessarily conscious of the process of 
becoming entrained to an incoming pulse stream. How do 
rhythmic stimuli induce percepts of pulse within the listener in 
the absence of any strictly periodic acoustic information? 
Taken from a different perspective, how is the pulse percept 
used by a performer to organize time in the course of a 
performance of music?    	

 
This study looks at the ways in which recurrent neural networks can encode pulse from music that is only 
marginally periodic with respect to a beat. For this, I refer to this characterization of pulse as quasi-periodic 
which I define to be music that contains implicit references to locally isochronous temporal events but does not 
adhere to a fixed tempo. Based upon this definition, improvisative music is well suited to the definition just 
described. This study aims to derive a novel representation of pulse onsets from analyzing audio from solo jazz 
drumming performances.      
 
Much current research is exploring the ways in which neural networks can be applied to create artificially 
intelligent generative music. Previous research in the creative application of musical machine learning includes 
style transfer (Ulyanov 2016), music information retrieval (MIR), and generative/interactive models capable of 

Figure 1: Temporal Hierarchy of Pulse (Fitch 2013) 



improvising with performers in real time (Eck 2007). While some beat detection algorithms leveraging neural 
networks have focused on beat induction in fixed tempo music (see Lambert et al. 2015, Eck & Schmidhuber 
2002), I’m interested in applying network learning procedures to quasi-periodic improvisatory music as a way 
to learn about how rhythmic events are derived from pulse percepts. In doing so, I hope to shed light on the way 
in which a performer organizes time in relation to a perceived pulse. As such this project is an attempt to reveal 
any beat-oriented organizational structure that might inform a jazz drummer’s sense of pulse during the course 
of an improvisation.  
 
This study’s aim is twofold: to evaluate the extent to which recurrent neural networks are capable of 
incorporating learned pulse representations from its input and to establish a generative model that encompasses 
learned, rhythmic aspects of a specific drummer’s style. From this I want to explore how this model might be 
generalizable to other performances of jazz drumming as an analytical and musicological device.  

Methods 

This study looks at a singular performance of jazz drums from the album, ‘nommo’, by Milford Graves and Don 
Pullen recorded in 19671. This particular album was chosen because of the stylistic performance of the 
drummer, Milford Graves, which seemed to adhere to a style of playing that fit the prior description of ‘quasi-
periodic’. It was also deemed to be representative of free jazz insofar as the study’s findings might be 
generalizable with respect to genre.   

This study examined two types of recurrent neural networks (RNNs): stacked Long-Short Term Memory 
(LSTM) RNNs first developed by Hochreiter and Schmidhuber in 1997 and Clockwork (CW) RNNs developed 
by Koutník in 2014. LSTM-RNNs have been shown to be effective in handling temporally-dependent 
sequences such as time-series data and have been used extensively to create generative models of language 
(Karpathy 2015). However CW-RNNs have been shown to outperform LSTM-RNNs in spoken word 
recognition and handwriting recognition tasks (Koutník et al. 2014). Recently machine listening in the context 
of music have shown how CW-RNNs outperform LSTM-RNNs in real-time music composition tasks via 
generative models (Sidor & Jack 2016). In meter perception studies, gradient frequency neural networks (Large 
et al. 2010) have been introduced as input to LSTM-RNNs to study their ability to track periodic changes of 
tempo and learn long-term temporal structure from an audio signal (Lambert et al. 2014).    

The approach highlighted in this study is similar to word generation models insofar as it treats sequences of beat 
onsets as temporally dependent given the context of the auditory scene in much the same way that words are 
treated as spatially dependent on the context of the word and the sentence. This study aims to explore the extent 
to which underlying rhythmic structure can be learned from these RNNs that have shown success in uncovering 
organizational structure in sequences of data.  

The training set is comprised of eighty, ten second samples of solo drum recordings from the free jazz album, 
‘nommo’, performed by Milton Graves. Each ten second sample is analyzed for the beat onset information 

																																																								
1	Graves, M. & Pullen, D. (1967). nommo [compact disc]. New Haven, NJ: SRP Records. 
	



(described in the next section) and provided as input into the LSTM and CW-RNNs. After training, the models 
can be seeded with data from the test set to produce generative sequences of beat onsets.    

Spectral Beat Onsets and Local Tempo Estimates  

This model is dependent on beat information being appropriately encoded from the raw audio signal so that the 
RNN can learn to predict and generate beats. More specifically, the beat tracking algorithm used in this network 
employs a dynamic programming algorithm that balances spectral envelope onsets with global tempo estimates 
(Ellis 2007). In this way, both locally specific onsets (spectral envelope) are paired with temporally regular 
onsets (global tempo estimates) to create representation of rhythm that contains both periodic and non-periodic 
information pertaining to the beat2. The beat tracking data was collected using the Librosa3 audio analysis 
python library. This next section provides an overview of the Ellis style4 beat tracking methods used in this 
study. 

 

Spectral Beat Onsets  

The spectral beat onsets are calculated using a basic perceptual model that uses peak picking from Short Time 
Fourier Transform (STFT) frames (hopsize=512 samples) and an auditory representation mapping to 40 Mel 
bands via a weighted summing of the spectrogram values (Ellis 2005). The algorithm provides a representation 
of a one-dimensional onset strength envelope as a function of time that corresponds to the proportional increase 
energy summed across auditory frequency bands 5. This approach has shown to work well for a variety of 
timbres in different musical contexts (Bello et al. 2005). Figure 2 and Figure 3 provides example plots (in 
frames and samples respectively) of the spectral strength envelope corresponding to two different ten second 
audio clips used in the training set.  

																																																								
2 This approach would be less useful for music that adheres to a fixed tempo for instance. Because of the nature of free jazz drums 
(quasi-periodic) where an objective ‘beat’ cannot be easily established, it seemed critical to include both onset measures (spectral 
onsets and global tempo) as input the neural net so that the network might learn to find patterns between the temporally periodic 
onsets inherent to the global tempo and the more stochastic onset information specified by the spectral envelopes.   
3 https://github.com/librosa/librosa 

4 For a more comprehensive documentation of this beat tracking algorithm please see ‘Dynamic Beat Tracking’ (Ellis 2007).       

5 This Mel Spectrogram is converted to dB and first-order differences across time are calculated for each band. The negative values 
are rectified to zero and the positive differences are summed across frequency bands. This signal is passed through a high-pass filter 
with a fc around 0.4 Hz to make it local mean and smoothed with a Gaussian envelope.  

	



 

         Figure 2: Spectral Onset Envelope (actual representation)        Figure 3: Spectral Onset Envelope with Audio Waveform 

 

Global Tempo Estimates 

To derive the global tempo estimates, a cost transition objective function, C({ti}) is defined in [1].  

𝐶 𝑡# = 𝑂 𝑡# + 𝛼(
#)* 𝐹(𝑡# − 𝑡#.*, 𝜏1)(

#)3   [1] 

Here, {ti} is the sequence of beat instances found by the tracker, O(t) is the spectral onset envelope from the 
audio, F(t) is a consistency function that mitigates inter-beat interval t with an ideal beat spacing defined by the 
target tempo (tp), a is a weighting to balance the two terms above. F(t) is defined in [2].  

     𝐹 ∆𝑡, 𝜏 = 	−(𝑙𝑜𝑔 ∆9
:
)3   [2] 

The objective function can derive a best-scoring time sequences by iterating recursively to calculate the best 
possible score C*(t) (via Bellman) [3] and while recording the actual preceding beat time that gave this score as 
shown in P*(t) in [4].   

   𝐶∗ 𝑡 = 	𝑂 𝑡 +	max
:)?..9

{𝛼𝐹 𝑡 − 𝜏, 𝜏1 + 𝐶∗ 𝜏 }  [3]    

    𝑃∗ 𝑡 = 𝑎𝑟𝑔 max
:)?..9

{𝛼𝐹 𝑡 − 𝜏, 𝜏1 + 𝐶∗ 𝜏 }  [4] 

The procedure for finding the optimal beat times (maximizing the cost-transition function) is as follows 

1.) Calculate C* and P* for every time starting from time 0. 
2.) Look for the largest value of C* (typically toward the end of the sequence) to form final beat instance tN.  
3.) Recursively iterate via P* finding preceding beat time tN-1 = P*(tN) and working backwards until 

reaching time 0.  



The procedure searches the entire exponentially-sized set of all possible time sequences. In this study, this 
optimal beat sequence forms the ‘periodic’ local tempo estimates in frames (1 frame = 512 samples). Figure 4 
shows an example of these local beat estimates as onsets over the course of an audio training example.  

 

Note how the local beat estimates (blue vertical lines) are 
much more periodic in time relative to the spectral onsets 
(in red) which give priority to local events. This is due to 
the fact that they are estimating a tempo given 
information about both the spectral onsets and a global 
tempo estimate that emerges from the objective function 
just described. This example illustrates a single beat-onset 
vector that will eventually become parsed into windowed 
subsequences and fed into the neural networks described 
below.   

Armed with both the onset detection functions—the 
spectral onsets and the global beat onset estimates—this 
study combined both of these mid-level beat representations as 
input to the RNNs.  

 

RNN Architecture  

Training Set  

The beat onsets described in the previous section are used as inputs to an LSTM and CW-RNN with two hidden 
layers (see architecture) and one fully-connected layer with a softmax output. The one-hundred training 
examples were sampled at 22050 Hz. The ten second input beat onset vectors were in terms of frames ( » 431 
frames per training example where 1frame = 512 samples » 23ms) due to the beat onset algorithms using STFT 
with a hopsize of 512 with N=sr. This reduces the dimensionality of the beat representation considerably and 
creates a quantized temporal grid of approximately 23 ms/frame. The network used a validation split of 0.1, 
reserving the last 10% of the data to be used for validation and generative seeds.      

To create the input to the LSTM, the beat onsets vectors are windowed into sequences of 20 frames with the 
sequences being trained to predict the 21st frame (the window then moves over one time step to predict the 22nd  
frame until the end of the sequence is reached). This sequence length6 was chosen with the intuition that the 
performer would be able to respond to external stimuli at around 0.5 seconds which is the equivalent of around 
20 frames.  

																																																								
6 The sequence length was found to be a very significant parameter. I experimented with different sequence lengths to see what effect 
it would have on the neural network. This is discussed in the results section.  

Figure 4: Global Tempo Estimate Onsets (Blue) and Spectral 
Envelope Onsets (red) 



The amplitudes of the beat vectors were either fixed to a binary representation (based on the onset amplitude 
being greater than some threshold value) or were quantized into ten steps from [0.0, 0.1, … 1.0] to create a 
scaled representation. The target values were converted into a one hot encoding at the output so the network 
could be configured to predict the probability of these 10 quantized intensity values.  Whereas the binary beat 
vectors might only learn lower-level temporal structure, a scaled representation might uncover the ways in 
which the beat patterns contain accent-oriented (intensity) relationships (e.g. a strong beat followed by a weak 
beat). The results section comments on some of these characteristics.   

Network Architecture 

The basic neural network architecture shown in Figure 5 was created using the Keras7 library for python. For 
the LSTM-RNN, the first and second LSTM layers contained 50 and 100 units respectively and the dense 
output uses a sigmoid layer for the binary vector case and a softmax layer of dimension 10 for the scaled case. It 
uses a dropout with a probability of 20 in between each hidden layer. In short, this is a single value 
classification problem with either 2 classes (0,1) or 10 classes depending on the binary or scaled representation.  

 

Figure 5: Network Architecture 

The CW-RNN consisted of 128 hidden units that were divided into nine equally sized grouped with exponential 
clock timings (1,2,4,…,256) as parameterized in the original paper’s description (J. Koutník et al. 2014). In a 
CW-RNN, the hidden layer is broken up into separate modules that process inputs at different periodic 
frequencies. This has the advantage of allowing updates to occur at different clock speeds so that low-frequency 
modules might impart relevant temporal information to high-frequency modules in a one-directional manner.   

Because the fully-connected output is a probability prediction, the error function is categorical cross-entropy or 
the scaled LSTM and CW-RNN case and a binary cross-entropy for the binary representation LSTM. The 
network used ‘adam’ optimization during training. The networks were trained for 200 epochs each which was 
chosen heuristically based off of the imperative of seeking a balance between generalization of input data 
without overfitting.  

 

																																																								
7 http://github.com/fchollet/keras/ 
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Results and analyses 

Because the primary goal of this study was to create a generative model that was capable of producing beat 
patterns representative of a particular drummer’s pulse trajectory, there are several ways in which to evaluate 
the learned models. First we can look at how well the models were able to predict target samples from the 
validation set in terms of accuracy. 

The binary representation’s average prediction accuracy, 60.9%, was slightly better than on-off beats onsets 
being selected at random. Because the prediction is binary, this means that this model was mostly unable to 
predict subsequent beats from the test sets. However, the scaled representation showed a prediction accuracy of 
73.2 % after 200 epochs. The best accuracy was achieved with the CW-RNN which showed an accuracy of 
87.1%.8 

Figure 6 shows the respective loss over two hundred epochs for the binary LSTM, scaled LSTM and clockwork 
RNN neural network models for different sequence lengths. The loss was shown to continue to decrease upon 
further training but for purposes of comparison, the plots for each net were all trained for 200 epochs.  

   

Figure 6: (left to right) Binary LSTM (a), Scaled LSTM (b), and Scaled CW-RNN Loss vs. Epoch 

 

To generate output from the models after training, sequences from the test set were used to seed the model to 
produce an output prediction which were then be fed back into the input. This process is repeated to produce 
novel sequences of beat activations that the neural network has learned.   

The probability density (PDF) plots shown in Figure 7 are helpful in understanding the relative frequency of 
beat onsets within the length 20 sequences in the training set and their corresponding generated sequences. 
These plots were produced using a PDF kernel density estimate (kde) to provide a density estimation measure 
of the test data and the resultant generated sequences (test sequences and generated sequences were assumed to 

																																																								

8 Because this study was less concerned with predicting actual beat onsets given a prior beat context, this accuracy metric is less 
meaningful than evaluating if the model has learned a stylistically representation of a drummer’s beat pattern.  

	



be non-parametric9). It provides an indication of the relative beat onset density of the data within a window of 
sequence length 20.  

In general, the onset density in the generated sequences were sparser than the sequences in the test set. It’s 
evident from Figure 7 that the binary beat onsets in the test set were relatively evenly-distributed with slightly 
more emphasis on non-beat (0) values which implies that there were more ‘rests’ than beat events. This 
characteristic is more pronounced in the LSTM and CW-RNN density plots where there clearly is a dearth of 
high-valued beat onsets. This is an important feature of the data representation insofar as it provides an 
indication of beat onset sparsity as it applies to both training and tests sets. Similarly, we can look at individual 
sequences’ density distributions to gauge how accurate their predicted generative sequences were with respect 
to the input.  

 

Figure	7:	Density	Estimate	Measure:	Kernel	Density	Estimation	of	PDF	-	Cumulative	Seed	and	Generative	Sequences	for	Binary	LSTM,	Scaled	LSTM,	
and	Scaled	CW-RNN	

 

Two example generated sequences and their density functions are plotted in Figure 8 and Figure 9. In Figure 7, 
the binary predicted sequence is more sparsely populated than the seeding sequence. This is reflected in the 
density plot where the predicted density contour (shown in red) is skewed toward 0.0 which means that it 
contains a sparser distribution of onsets relative to the seeded sequence. Similarly, Figure 8 shows a generated 
sequence that contains nearly the same density of beat onsets as the sequence that seeded it which is reflected in 
the nearly overlapping density estimation.   

 

																																																								
9 I would be interested in applying statistical methods to the beat onset data set. If the beat onset data was found to be associated with 
a parametric family of distributions, then one could assume that density estimation could be determined by finding estimates of the 
mean and variance in the data.   



       

      Figure 8: Density Estimation of 'Dissimilar' Seed and Generated Sequences.             Figure 9: Density Estimation of 'Similar' Seed and Gen. Sequences 

Discussion 

All of the neural nets employed in this study were able to learn information pertaining to the onsets’ density per 
frame window while the scaled LSTM and CW-RNN were shown to be somewhat capable of learning mid-level 
pulse representation with intensity contours reflective of the test set. The CW-RNN was shown to perform 
significantly better in terms of producing novel output while still retaining stronger beats that reflect the global 
tempo estimate onsets. The binary beat representation was mostly only able to encode the beat density and was 
generally unable to produce novel sequences containing pulse.   

One of the main determinants of the generative output was the length of the sequence window that parses the 
training examples. This is the number of frames the network trains on to predict the subsequent beat onset. 
Determining the optimal sequence length was mostly done heuristically until a sequence length of 20 was 
chosen as a benchmark. 20 frames also correspond to approximately 0.5 seconds which seemed like a 
reasonable amount of time for drummer to respond to acoustic stimuli in the course of a performance.   

Most of the generated sequences in the test set were able to produce novel beat sequences for about 20 to 30 
time steps. This is probably due to the fact that they were trained on sequences of roughly the same length. By 
modulating the sequence prediction window to 50 frames, the networks were generally unable to generate 
output that contained both periodic and novel patterns. Conversely, decreasing the sequence window to around 
5 frames the model was able to pick up on more locally periodic patterns in the input but was unable to provide 
longer term generative output that did not settle on some predetermined repetition.  

The outcomes of the generated sequences were very sensitive to the specific seeding data that produced it. The 
two main types of generative trends produced from seeding the models were indefinite repetition upon 
subsequent time steps, settling on 0, or production of quasi-periodic beat patterns. However, many of the seeded 
inputs from the test set were able to induce a periodic rhythm at the output that was reflective of a pulse from 
the input sequence.  For instance, the clockwork RNN generated sequence shown in Figure 10 shows a 
predicted sequence that contains repeated pattern that bears a similar temporal grouping from the seeded 
sequence shown in blue. One way to analyze this behavior is to suggest that the network has learned first-order 
information pertaining to the seed sequence’s local temporal pattern and a second-order grouping derived from 
the first that pertains to that pattern’s global temporal pattern. Figure 11 shows a scaled LSTM network that 
clearly was able to learn the global tempo estimated onsets from the test set. The two large onsets offset by 
about 16 frames in the seed sequence is repeated three times in the generated sequence.  



   

	Figure	10:	Generated	Beat	Sequence	with	locally	Periodic	Information		 Figure	11:	Generated	Beat	Sequence	

 

Upon increasing the sequence generation length to around 300 frames (which corresponds to roughly 7 seconds) 
many of the sequences were able to produce periodic yet non-isochronous temporal patterns that seemed to 
reflect input sequence temporal and intensity relationships. Such an example is show in Figure 12 and 13 where 
the generated sequence was extended to 300 frames. Figure 9 shows how the network has learned to generate a 
periodic pulse at about the same frequency as the 1.0 values in the seed sequence. The higher frequency 0.1 
values in the seed sequence are also present in the generated sequence and produce novel patterns of activations 
that are non-isochronous.  

 

Figure	12:	Generated	Beat	Onsets	showing	Periodic	Pulse	Onsets																				Figure	13.	Generated	Beat	Onsets	showing	Temporal	Hierarchy	

 

The main limitations of this approach is that the neural network is dependent on the pulse being properly 
represented (as a combination of spectral envelopes and global tempo estimates) as input to the neural net. In 
this way, the network is only as good as the data it trains on; if this representation of pulse is ill-suited to the 
task at hand, the network will be unable to learn any patterns of pulse structure. The models proposed in this 



study were notionally inspired by the word generation models of LSTM networks (namely their letter-word-
sentence context dependence). In this study however time is treated as somewhat analogously to letter space in 
the LSTM word generation models. One reason the word generation networks can learn to produce (semi) 
coherent sentences is because of these relational and contextual patterns between letters and words (e.g. certain 
vowels tend to follow certain consonants in certain orders). The beat onset task described in this paper does not 
share this same level of consistency between onset values and temporality. In the scaled LSTM-RNN, different 
onset values (as one hot vectors) would correspond to different letters in the word generation model but these 
onset values are less likely to contain the same structural relationship within letters via a given word in a given 
sentence. 

Future Work 

Another beat representation to feed into the networks would be to create onset vectors that encode the time 
differences of the spectral onsets from the global tempo estimate onsets. In this way, the network would learn 
deviations from a pulse representation that is pre-coded into the periodicity inherent in the global tempo. The 
network wouldn’t have to learn pulse induction from scratch but could focus on how rhythmic events tend to 
deviate from expected beats. This schema might possess a capacity to learn stylistic rhythmic ‘feels’ that are 
associated with certain types of music (e.g. ‘swing’ in jazz music, ‘deep pocket’ in funk).         

Nevertheless, as a generative model the neural networks were able to pick up on structural features of the beat 
onsets in the training set and generate them with some amount of variability in the output. As a future 
application, this neural network might be pre-trained on much more extensive set of training examples, and then 
used in real-time with a performer to incorporate rhythmic aspects of their performance into the network. 
Similarly, a performer might be able to access specific parameters of the network in real-time so as to induce 
certain output patterns. Additionally, in training the network it would be advantageous to be able to separate 
individual drums from the acoustic texture itself to form beat activation patterns per drum in the drum 
ensemble. In this way, the network might be able to learn patterns of activation between percussion instruments 
in the set as opposed to relying on mid-level, one-dimensional representation of pulse.     
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